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Abstract. We present explicit formulae for q-exponentials on quantum spaces which could be of particular
importance in physics, i.e. the q-deformed Minkowski space and the q-deformed Euclidean space with two,
three or four dimensions. Furthermore, these formulae can be viewed as 2-, 3- or 4-dimensional analogues
of the well-known q-exponential function.

1 Introduction

In this work we would like to continue our program for de-
veloping a non-commutative analysis, which in the follow-
ing is referred to as q-analysis. One of our motivations for
doing this is that a field theory based on q-analysis should
be well behaved in the UV-range [1–4]. So far we have con-
cerned ourselves with explicit formulae for star-products
[5], representations of partial derivatives [6] as well as q-
integrals [7]. All of these mathematical objects have been
considered for such non-commutative spaces which could
be of particular importance in physics, i.e. the q-deformed
Minkowski space and the q-deformed Euclidean space with
three or four dimensions. Our goal now is to take a step to-
wards completing this program by providing also explicit
formulae for q-exponentials.

Before doing this let us recall some basic aspects of
our approach. As already mentioned, q-analysis can be re-
garded as a non-commutative analysis formulated within
the framework of quantum spaces [8–10]. These quan-
tum spaces are defined as comodule algebras of quantum
groups and can therefore be interpreted as deformations
of ordinary coordinate algebras [11]. For our purposes it
is at first sufficient to consider a quantum space as an
algebra Aq of formal power series in the non-commuting
coordinates X1, X2, . . . , Xn

Aq = C [[X1, . . . Xn]] /I, (1)

where I denotes the ideal generated by the relations of
the non-commuting coordinates. The algebra Aq satisfies
the Poincaré–Birkhoff–Witt property, i.e. the dimension
of the subspace of homogeneous polynomials should be
the same as for commuting coordinates. This property is
the deeper reason why the monomials of normal ordering
X1X2 . . . Xn constitute a basis of Aq. In particular, we can
establish a vector space isomorphism between Aq and the
commutative algebra A generated by ordinary coordinates
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x1, x2, . . . , xn:

W : A −→ Aq,

W(xi1
1 . . . xin

n ) = Xi1
1 . . . Xin

n . (2)

This vector space isomorphism can be extended to an al-
gebra isomorphism introducing a non-commutative prod-
uct in A, the so-called �-product [12,13]. This product is
defined by the relation

W(f � g) =W(f) · W(g), (3)

where f and g are formal power series in A. Additionally,
for each quantum space exists a symmetry algebra [14,15]
and a covariant differential calculus [16] which can provide
an action upon the quantum spaces under consideration.
By means of the relation

W(h � f) := h �W(f), h ∈ H, f ∈ A, (4)

we are also able to introduce an action upon the corre-
sponding commutative algebra.

To gain further insight it is also useful to consider
quantum spaces from a point of view provided by cate-
gory theory. A category for our purposes is just a collec-
tion of objects X, Y, Z, . . . and a set Mor(X, Y ) of mor-
phisms between two objects X, Y such that a composi-
tion of morphisms is defined which has similar properties
to the composition of maps. In particular, we are inter-
ested in tensor categories. These are categories that have
a product, denoted ⊗ and called the tensor product, which
admits several “natural” properties such as associativity
and existence of a unit object. For a more formal treat-
ment we refer the interested reader to the presentations
in [17–19].

Essential for us is the fact that the representations
(quantum spaces) of a given quasitriangular Hopf algebra
(quantum algebra) are the objects of a tensor category, if
the action of the Hopf algebra on the tensor product of
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two quantum spaces is defined by1

h � (v ⊗ w) = (h(1) � v)⊗ (h(2) � w). (5)

In this category exist a number of morphisms of particular
importance. First of all, for any pair of objects X, Y there
is an isomorphism ΨX,Y : X ⊗ Y → Y ⊗ X such that
(g⊗ f) ◦ ΨX,Y = ΨX′,Y ′ ◦ (f ⊗ g) for arbitrary morphisms
f ∈ Mor(X, X ′) and g ∈ Mor(Y, Y ′) and the hexagon
axiom holds. This hexagon axiom is the validity of the
two conditions

ΨX,Y ◦ ΨY,Z = ΨX⊗Y,Z , ΨX,Z ◦ ΨX,Y = ΨX,Y ⊗Z . (6)

A tensor category having the above property is called a
braided tensor category. Furthermore, for any algebra B
in this category there are morphisms ∆ : B → B⊗B,
S : B → B and ε : B → C forming a braided Hopf al-
gebra, i.e. ∆, S and ε obey the usual axioms of a Hopf
algebra, but now as morphisms in the braided category.
These considerations show that under suitable assump-
tions our quantum spaces can be viewed as braided Hopf
algebras. For a deeper understanding of these ideas we
also refer the reader to the excellent presentations in [20,
21].

Now let us make contact with another very important
ingredient of our braided tensor category. For this purpose
we suppose that our category is equipped with dual ob-
jects B∗ for each algebra B in the category. This means
that we have a dual pairing

〈 , 〉 : B ⊗B∗ → K with
〈
ea, f b

〉
= δb

a, (7)

where {ea} is a basis in B and {fa} a dual basis in B∗.
This allows us to introduce an exponential which from
an abstract point of view is nothing other than an object
whose dualization is the evaluation map [9]. Thus, the
exponential is given by the map2

exp : K → B∗ ⊗B with exp =
∑

a

fa ⊗ ea (8)

and satisfies the following relations

(�⊗ id) exp =
∑
j,k

f j ⊗ fk ⊗ ekej = exp23 exp13,

(id⊗�) exp =
∑
j,k

f jfk ⊗ ek ⊗ ej = exp13 exp12 . (9)

To make this concrete, we recall that it was shown in
[22] that there is such a duality pairing of quantum space
coordinates and the corresponding partial derivatives. Ex-
plicitly, we have

〈 , 〉 :M∂ ⊗Mx → K

with
〈
f(∂i), g(xj)

〉 ≡ ε(f(∂i) � g(xj)). (10)

1 We write the coproduct in the so-called Sweedler notation,
i.e. ∆(h) = h(1) ⊗ h(2).

2 In the quantum group case such an object is often referred
to as the canonical element.

As it is our aim to derive explicit formulae for
q-exponentials of q-deformed Minkowski space and q-
deformed Euclidean space with up to four dimensions, our
task is therefore to determine a basis of the coordinate
algebraMx being dual to a given one of the derivative al-
gebra M∂ . Inserting the elements of these two bases into
formula (8) will then provide us with explicit expressions
for the exponentials. It should be stressed that the exis-
tence of the algebra isomorphismW defined in (2) enables
us to carry out all the necessary calculations in the cor-
responding commutative algebras. In doing so we are led
to 2-, 3- and 4-dimensional analogues of the well-known
q-exponential function [23,24].

As it was shown in [6], the partial derivatives can act on
the algebra of quantum space coordinates in four different
ways, i.e. by right actions, left actions and their conjugated
counterparts. For this reason there are four possibilities
for defining a pairing between coordinates and derivatives.
More concretely, we can distinguish the pairings

〈f(∂), g(x)〉L,R̂ ≡ ε(f(∂) � g(x)),

〈f(∂̂), g(x)〉L̂,R ≡ ε(f(∂̂) �̄ g(x)),

〈f(x), g(∂)〉L,R̂ ≡ ε(f(x) 	̄ g(∂)),

〈f(x), g(∂̂)〉L̂,R ≡ ε(f(x) 	 g(∂̂)), (11)

where ∂̂A differs from ∂A by a normalization factor,
only [6,25,26]. Clearly, each of these pairings will lead
to its own exponential. It should also be clear from the
above considerations that the different exponentials can
be linked via the same crossing symmetries which have
already helped us in [6] to transform the underlying rep-
resentations of partial derivatives into each other.

There are two properties of the considered exponen-
tials worth recording here. First of all, the exponentials
are normalized in such a way that

(ε⊗ id) exp(x | ∂) = 1,

(id⊗ ε) exp(x | ∂) = 1. (12)

These equalities result from

(id⊗ ε) exp =
∑

a

fa ⊗ ε(ea)

=
∑

a

fa ⊗ 〈ea, 1〉

= 1⊗ 1 = 1, (13)

(ε⊗ id) exp =
∑

a

ε(fa)⊗ ea

=
∑

a

〈1, fa〉 ⊗ ea

= 1⊗ 1 = 1. (14)

Second the exponentials obey the identities [21]

∂i � exp(xR̂ | ∂L) = exp(xR̂ | ∂L) � ∂i,

∂̂i �̄ exp(xR | ∂̂L̂) = exp(xR | ∂̂L̂) � ∂̂i,
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∂i � exp(∂R̂ | xL) = exp(∂R̂ | xL) 	̄ ∂i,

∂̂i � exp(∂̂R | xL̂) = exp(∂̂R | xL̂) 	 ∂̂i (15)

which tell us that our exponentials can be regarded as
q-analogues of classical plane-waves. For a proof of these
formulae one has to realize that an algebra acts on its dual
via

ea � f b = 〈ea, f b
(1)〉f b

(2). (16)

With this relation at hand one can proceed in the following
fashion:

(eb ⊗ 1) � exp

=
∑

a

eb � fa ⊗ ea

=
∑

a

〈eb, f
a
(1)〉fa

(2) ⊗ ea

=
∑
a,c

〈eb, f
a〉fc ⊗ ecea

=
∑

c

fc ⊗ eceb

= exp ·(1⊗ eb). (17)

Notice that the third equality uses the first relation in
(9). Through a slight modification to these arguments, one
can proof the corresponding identities concerning right ac-
tions.

2 2-dimensional q-deformed Euclidean space

The q-deformed Euclidean space with two dimensions is
generated by coordinates Xi, i = 1, 2, subject to the rela-
tion

X1X2 = qX2X1. (18)

As it is well-known, there are two covariant differential
calculi on this quantum space given by [16]

∂iXj = εij + q2(R̂−1)ij
klX

k∂l,

∂̂iXj = εij + q−2(R̂)ij
klX

k∂l, i, j = 1, 2, (19)

where R̂ and εij denote respectively the R-matrix of the
quantum algebra Uq(su2) and the corresponding quantum
metric3. Written out, we get

∂1
XX1 = qX1∂1

X , (20)

∂1
XX2 = −q− 1

2 + q2X2∂1
X ,

∂2
XX1 = q

1
2 + q2X1∂2

X − q2λX2∂1
X , (21)

∂2
XX2 = qX2∂2

X

and

∂̂1
XX1 = q−1X1∂̂1

X ,

3 Our notation, conventions and definitions are listed in the
appendix.

∂̂1
XX2 = q− 1

2 + q−2X2∂̂1
X + q−2λX1∂̂2

X , (22)

∂̂2
XX1 = −q

1
2 + q−2X1∂̂2

X ,

∂̂2
XX2 = q−1X2∂̂2

X . (23)

with λ = q − q−1. From these commutation relations one
can calculate the action of the partial derivatives on mono-
mials of a given normal ordering. In this way we have de-
rived the expressions

∂1 � (X2)m2(X1)m1 = −q− 1
2 [[m2]]q2(X2)m2−1(X1)m1 ,

∂2 � (X2)m2(X1)m1 = q
1
2+m2 [[m1]]q2(X2)m2(X1)m1−1

(24)

and

∂̂1 �̄ (X1)m1(X2)m2 = q− 1
2 −m1 [[m2]]q−2(X1)m1(X2)m2−1,

∂̂2 �̄ (X1)m1(X2)m2 = −q
1
2 [[m1]]q−2(X1)m1−1(X2)m2 ,

(25)

where the antisymmetric q-number is defined by [27]

[[c]]qa ≡ 1− qac

1− qa
, a, c ∈ C. (26)

Iteration of (24) and (25) then leads to the formulae for
the dual pairing4

〈
(∂2)n2(∂1)n1 , (X2)m2(X1)m1

〉
L,R̂

= ε
(
(∂2)n2(∂1)n1 � (X2)m2(X1)m1

)
= δm1,n2δm2,n1

(
−q− 1

2

)n1

q
1
2 n2 [[n1]]q2 ![[n2]]q2 !, (27)〈

(∂̂1)n1(∂̂2)n2 , (X1)m1(X2)m2

〉
L̂,R

= ε
(
(∂̂1)n1(∂̂2)n2 �̄ (X1)m1(X2)m2

)
= δm1,n2δm2,n1

(
−q

1
2

)n2
(
q− 1

2

)n1

[[n1]]q−2 ![[n2]]q−2 !,

(28)

where the q-factorials are given by

[[m]]qa ! ≡ [[1]]qa [[2]]qa . . . [[m]]qa ,

[[0]]qa ! ≡ 1. (29)

The above results can be simplified further by introducing
partial derivatives with lower indices defined by

∂i = εij∂
j , ∂̂i = εij ∂̂

j . (30)

Thus, we end up with

4 Notice that ε(f(x)) = f(x = 0).
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(∂1)n1(∂2)n2 , (X2)m2(X1)m1

〉
L,R̂

= δm1,n1δm2,n2 [[n1]]q2 ![[n2]]q2 !, (31)〈
(∂̂2)n2(∂̂1)n1 , (X1)m1(X2)m2

〉
L̂,R

= δm1,n1δm2,n2 [[n1]]q−2 ![[n2]]q−2 !. (32)

These expressions enable us to identify the two sets of
basis elements being dual to each other. With this knowl-
edge we are now in a position to apply formula (6) giving
us

ẽxp(xR̂ | ∂L) =
∞∑

n1,n2=0

(X2)n2(X1)n1 ⊗ (∂1)n1(∂2)n2

[[n1]]q2 ![[n2]]q2 !
,

(33)

exp(xR | ∂̂L̂) =
∞∑

n1,n2=0

(X1)n1(X2)n2 ⊗ (∂̂2)n2(∂̂1)n1

[[n1]]q−2 ![[n2]]q−2 !
,

(34)

where the tilde in the first formula shall remind us of the
fact that this exponential compared to the second one
refers to a different choice for the normal ordering of the
coordinates and derivatives.

The remainder of this section is devoted to the calcula-
tion of exponentials corresponding to right representations
of partial derivatives. For this purpose it is useful to real-
ize that left representations are transformed to right ones
by conjugation, i.e.

∂ � f = f̄ 	̄ ∂̄,

∂ �̄ f = f̄ 	 ∂̄. (35)

In view of this relationship and the conjugation proper-
ties5

hi = εijh
j , (36)

where hi stands for Xi or ∂i, the right actions of partial
derivatives on normally ordered monomials take on the
form

(X2)m2(X1)m1 	̄ ∂1

= −q
1
2+m1 [[m2]]q2(X2)m2−1(X1)m1 ,

(X2)m2(X1)m1 	̄ ∂2

= q− 1
2 [[m1]]q2(X2)m2(X1)m1−1 (37)

and

(X1)m1(X2)m2 	 ∂̂1

= q
1
2 [[m2]]q−2(X1)m1(X2)m2−1,

(X1)m1(X2)m2 	 ∂̂2

= −q− 1
2 −m2 [[m1]]q−2(X1)m1−1(X2)m2 . (38)

With the very same reasonings already applied to left rep-
resentations we can show that

5 We are here following the approach of [28] which implies
that partial derivatives and coordinates obey the same conju-
gation properties.

〈
(X1)m1(X2)m2 , (∂2)n2(∂1)n1

〉
L,R̂

= ε
(
(X1)m1(X2)m2 	̄ (∂2)n2(∂1)n1

)
= δm1,n1δm2,n2 [[n1]]q2 ![[n2]]q2 !, (39)〈
(X2)m2(X1)m1 , (∂̂1)n1(∂̂2)n2

〉
L̂,R

= ε
(
(X2)m2(X1)m1 	 (∂1)n1(∂2)n2

)
= δm1,n1δm2,n2 [[n1]]q−2 ![[n2]]q−2 !, (40)

which, in turn, leads to

ẽxp(∂R̂ | xL) =
∞∑

n1,n2=0

(∂2)n2(∂1)n1 ⊗ (X1)n1(X2)n2

[[n1]]q2 ![[n2]]q2 !
, (41)

exp(∂̂R | xL̂) =
∞∑

n1,n2=0

(∂̂1)n1(∂̂2)n2 ⊗ (X2)n2(X1)n1

[[n1]]q−2 ![[n2]]q−2 !
, (42)

where we have introduced coordinates with lower indices
by setting

Xi = εijX
j . (43)

It is now obvious, from what we have done so far, that
the different exponentials can be transformed into each
other by applying some simple rules. First of all, we can
verify the existence of a correspondence given by

ẽxp(xR̂ | ∂L)
i
q

→
→

i′
1/q←→ exp(xR | ∂̂L̂),

ẽxp(∂R̂ | xL)
i
q

→
→

i′
1/q←→ exp(∂̂R | xL̂), (44)

where the symbol
i
q

→
→

i′
1/q←→ indicates a transition via one of

the following two substitutions:

q ↔ q−1, ∂i ↔ ∂̂i′ , Xi ↔ Xi′
, (45)

q ↔ q−1, ∂i ↔ ∂̂i′
, Xi ↔ Xi′ , (46)

with i
′
= 3− i. Likewise, one can read off the transforma-

tion rules

ẽxp(xR̂ | ∂L) i↔i′
←→ ẽxp(∂R̂ | xL), (47)

exp(xR | ∂̂L̂) i↔i′
←→ exp(∂̂R | xL̂),

where i↔i′
←→ now denotes that one can make a transition

between the two expressions by applying one of the fol-
lowing two substitutions:

Xi ↔ ∂i, ∂i ↔ Xi, (48)

Xi ↔ ∂̂i, ∂̂i ↔ Xi. (49)

3 3-dimensional q-deformed Euclidean space

All considerations of the previous section carry over to
the q-deformed Euclidean space with three dimensions6.

6 For a definition of 3-dimensional q-deformed Euclidean
space see Appendix A.
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Thus, we limit ourselves to stating the results. As in the
2-dimensional case, there are two different covariant differ-
ential calculi which are completely described by the com-
mutation relations

∂AXB = gAB + (R̂−1)AB
CDXC∂D,

∂̂AXB = gAB + (R̂)AB
CDXC ∂̂D, A, B ∈ {3, +,−}, (50)

where R̂ denotes the R-matrix of the quantum group
SOq(3) and gAB the corresponding quantum metric. In
what follows, we restrict attention to the first relation in
(50) from which we have derived in [6] the following ex-
pressions:

∂− � (X+)m+(X3)m3(X−)m−

= −q−1[[m+]]q4(X+)m+−1(X3)m3(X−)m− , (51)

∂3 � (X+)m+(X3)m3(X−)m−

= q2m+ [[m3]]q2(X+)m+−1(X3)m3−1(X−)m− , (52)

∂+ � (X+)m+(X3)m3(X−)m−

= −q2m3+1[[m−]]q4(X+)m+(X3)m3(X−)m−−1

− qλ[[m3]]q2 [[m3 − 1]]q2(X+)m++1(X3)m3−2(X−)m− .

(53)

Using these formulae we obtain after some tedious steps〈
(∂+)n+(∂3)n3(∂−)n− , (X+)m+(X3)m3(X−)m−

〉
L,R̂

= ε
(
(∂+)n+(∂3)n3(∂−)n− � (X+)m+(X3)m3(X−)m−

)
= δm+,n−δm3,n3δm−,n+

×(−q)n+− n− [[m+]]q4 ![[m3]]q2 ![[m−]]q4 !. (54)

Now, we are again in a position to read off the two sets
of basis elements being dual to each other. Finally, this
enables us along with

∂A = gAB∂B (55)

to write down the exponential as

exp(xR̂ | ∂L)

=
∞∑

n=0

(X+)n+(X3)n3(X−)n− ⊗ (∂−)n−(∂3)n3(∂+)n+

[[n+]]q4 ![[n3]]q2 ![[n−]]q4 !
.

(56)

Repeating the identical steps as before, we can also
compute explicit formulae for the other types of q-
exponentials. These calculations show us the existence of
a correspondence given by

exp(xR̂ | ∂L)
±
q

→
→

∓
1/q←→ ẽxp(xR | ∂̂L̂),

exp(∂R̂ | xL)
±
q

→
→

∓
1/q←→ ẽxp(∂̂R | xL̂), (57)

where the symbol
±
q

→
→

∓
1/q←→ indicates a transition via one of

the following two substitutions:

q ↔ q−1, ∂± ↔ ∂̂∓, ∂3 ↔ ∂̂3, X± ↔ X∓, (58)

q ↔ q−1, ∂± ↔ ∂̂∓, ∂3 ↔ ∂̂3, X± ↔ X∓. (59)

Additionally, one can verify the transformation rules

exp(xR̂ | ∂L) +↔−←→ exp(∂R̂ | xL),

ẽxp(xR | ∂̂L̂) +↔−←→ ẽxp(∂̂R | xL̂), (60)

where the symbol +↔−←→ denotes that one can make a tran-
sition between the two expressions by applying one of the
following two substitutions:

XA ↔ ∂A, ∂A ↔ XA, (61)

XA ↔ ∂̂A, ∂̂A ↔ XA. (62)

4 4-dimensional q-deformed Euclidean space

The 4-dimensional Euclidean space [29] (for its definition
see Appendix A) can be treated along the same line of ar-
guments as the 2- and 3-dimensional one. Again we begin
by considering the commutation relations between partial
derivatives and coordinates, which for the two covariant
differential calculi read

∂iXj = gij + q(R̂−1)ij
klX

k∂l,

∂̂iXj = gij + q−1(R̂)ij
klX

k∂̂l, i, j = 1, . . . , 4, (63)

with R̂ and gij being the R-matrix of the quantum group
SOq(4) and the corresponding metric, respectively. From
the second relation in (63) we have found in [6] the fol-
lowing formulae for the action of partial derivatives on
normally ordered monomials:

∂̂1 �̄ (X1,...,4)m

= q−1−m2−m3 [[m4]]q−2(X1,...,4)m+(0,0,0,−1)

+ q−1λ[[m2]]q−2 [[m3]]q−2(X1,...,4)m+(1,−1,−1,0),

∂̂2 �̄ (X1,...,4)m = q−m1 [[m3]]q−2(X1,...,4)m+(0,0,−1,0),

∂̂3 �̄ (X1,...,4)m = q−m1 [[m2]]q−2(X1,...,4)m+(0,−1,0,0),

∂̂4 �̄ (X1,...,4)m = q[[m1]]q−2(X1,...,4)m+(−1,0,0,0), (64)

where, for compactness, we have introduced a new nota-
tion:

(X1,...,4)m = (X1)m1(X2)m2(X3)m3(X4)m4 ,

(∂̂4,...,1)n = (∂̂4)n4(∂̂3)n3(∂̂2)n2(∂̂1)n1 . (65)

Switching to partial derivatives with lower indices,

∂̂i = gij ∂̂
j , (66)

these expressions imply for the dual pairing the identity〈
(∂̂4,...,1)n, (X1,...,4)m

〉
L̂,R

= δm1,n1δm2,n2δm3,n3δm4,n4

· [[m1]]q−2 ![[m2]]q−2 ![[m3]]q−2 ![[m4]]q−2 !, (67)
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which, with the same reasonings as in the previous sec-
tions, leads to

exp(xR | ∂̂L̂)

=
∞∑

n=0

(X1,...,4)n ⊗ (∂̂4,...,1)n

[[n1]]q−2 ![[n2]]q−2 ![[n3]]q−2 ![[n4]]q−2 !
. (68)

In complete analogy to the 2- and 3-dimensional case
there is again a correspondence between the different types
of q-exponentials. First of all, we have

exp(xR | ∂̂L̂)
i
q

→
→

i′
1/q←→ ẽxp(xR̂ | ∂L),

ẽxp(∂R̂ | xL)
i
q

→
→

i′
1/q←→ exp(∂̂R | xL̂), (69)

which concretely means that the expressions on the right-
and left-hand side can be transformed into each other by
one of the following two substitutions:

q ↔ q−1, ∂i ↔ ∂̂i′ , Xi ↔ Xi′
, (70)

q ↔ q−1, ∂i ↔ ∂̂i′
, Xi ↔ Xi′ , (71)

where i = 1, . . . , 4, and i
′
= 5− i. In complete analogy to

the 2- and 3-dimensional case we can also find the trans-
formations

ẽxp(xR̂ | ∂L) i↔i′
←→ ẽxp(∂R̂ | xL),

exp(xR | ∂̂L̂) i↔i′
←→ exp(∂̂R | xL̂) (72)

symbolizing a transition via one of the following two sub-
stitutions:

Xi ↔ ∂i, ∂i ↔ Xi, (73)

Xi ↔ ∂̂i, ∂̂i ↔ Xi. (74)

5 q-deformed Minkowski space

From a physical point of view the most important case
we want to discuss in this article is q-deformed Minkowski
space [30–32]7. There are again two covariant differential
calculi given by

∂µXν = gµν + q−2(R̂−1
II )µν

ρσXρ∂σ,

∂̂µXν = gµν + q2(R̂II)µν
ρσXρ∂̂σ,

µ, ν ∈ {±, 0, 3}, (75)

where R̂II stands for one of the two R-matrices of the
q-deformed Lorentz algebra [35] and gµν for the corre-
sponding quantum metric. From the above relations we
have calculated in [6] representations for partial deriva-
tives. However, the complexity of these representations
makes it rather difficult to deduce for the dual pairing

7 For its definition see Appendix A. Other versions of q-
deformed Minkowski space are given in [33,34].

a closed expression from which we could read off the two
sets of basis elements. Thus, we cannot directly apply the
procedure of the last two sections for determining a basis
being dual to a given one of normally ordered monomials.
For this reason we would like to present a different method
for calculating q-exponentials.

To begin, our first job is now to seek a useful ansatz
describing the q-exponentials. Since our exponentials are
required to be bosonic [36] they have to satisfy the prop-
erties

Λ �
(
exp(xR | ∂̂L̂)

)
= (Λ⊗ Λ) � exp(xR | ∂̂L̂)

= ε(Λ) exp(xR | ∂̂L̂) = exp(xR | ∂̂L̂), (76)

τ3 �
(
exp(xR | ∂̂L̂)

)
= (τ3 ⊗ τ3) � exp(xR | ∂̂L̂)

= ε(τ3) exp(xR | ∂̂L̂) = exp(xR | ∂̂L̂), (77)

with τ3 being a grouplike generator of the q-Lorentz alge-
bra and Λ denoting the associated scaling operator [37].
Recalling that

Λ � Xµ = q−2Xµ,

Λ � ∂̂µ = q2∂̂µ, µ ∈ {+, 3, 0,−}, (78)

and

τ3 � X± = q∓4X±, τ3 � X0 = X0, τ3 � X3/0 = X3/0,

τ3 � ∂̂± = q∓4∂̂±, τ3 � ∂̂0 = ∂̂0, τ3 � ∂̂3/0 = ∂̂3/0,

(79)

together with the identities in (76) and (77) establishes
that the exponentials have to take the form8

exp(xR | ∂̂L̂)

=
∞∑

m=0

fm(X)⊗ (∂̂+)m−(∂̂3/0)m3(∂̂0)m3/0(∂̂−)m+ , (80)

where

fm(X)

=
∑

2l+v≤m3
−m3/0≤v, −m±≤l

f
m
l,v · (X+)m++ l(X3/0)m3/0+v

×(X3)m3−2l−v(X−)m−+ l. (81)

In the following it is our aim to determine the un-
known coefficients f

m
l,v. Before doing this let us introduce,

for brevity,

∂̂ k ≡ (∂̂+)k−(∂̂3/0)k3(∂̂0)k3/0(∂̂−)k+ ,

Xk ≡ (X+)k+(X3/0)k3/0(X3)k3(X−)k− . (82)

8 For notational convenience, we introduce a multi-index
m ≡ (m+, m3/0, m3, m−).
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Inserting the expressions of (80) and (81) into9

(ε⊗ id) ◦ (∂̂ k ⊗ id) � exp(xR | ∂̂L̂) = ∂̂ k (83)

provides us with a system of equations given by∑
2l+v≤m3

−m3/0≤v,−min(m+,m−)≤l

f
m
l,v ·

〈
∂̂ k, Xm+(l,v,−2l−v,l)

〉
L̂,R

= δm,k,

(84)
where

δm,k = δm+,k+δm3,k3δm3/0,k3/0δm−,k− . (85)

This system for the unknown coefficients f
m
l,v can be sim-

plified further by taking the relations〈
∂̂ m, Xm+(l,v,−2l−v,l)

〉
L̂,R

= 0, if 2l + v > 0 or v > 0,

(86)
a proof of which is given in Appendix B. By exploiting the
property (86) one can then show that we have

f
m
l,v = 0, if v < 0 or 2l + v < 0. (87)

The proof of this assumption can again be found in Ap-
pendix B. Finally, a little thought using (86) and (87)
shows that the system (84) can be reduced to∑

0≤2l+v≤m3
0≤v,− min(m+,m−)≤l

f
m
l,v·

〈
∂̂m+(l′,v′,−2l′−v′,l′),Xm+(l,v,−2l−v,l)

〉
L̂,R

= δv′
0 δl′

0 , (88)

if k is specified according to

k = m + (l′, v′,−2l′ − v′, l′)
= (m+ + l′, m3/0 + v′, m3 − 2l′ − v′, m− + l′), (89)

where l′ and v′ are non-negative integers with

2l′ + v′ ≤ m3. (90)

It is our next goal to present a method for solving the
above system of equations. Towards this end we introduce
the function

z(v, l) ≡ v + l +
[v

2

]
+ 1 +

v−1∑
i=0

([
m3 − i

2

]
+

[
i

2

])
, (91)

where [s] denotes the biggest integer not being bigger than
s. From the constraints on the summations in (84) and
(88) we know that the integer values the variables v and
l shall take on are restricted to

0 ≤ v ≤ vmax(m),

−
[v

2

]
≤ l ≤

[
m3 − v

2

]
, (92)

9 This formula follows from a direct application of (13) and
(15).

where we have set vmax(m) ≡ m3 +2 min(m+, m−). For a
better understanding of the following considerations it is
important to notice that z(v, l) shows the property

z(v, l) < z(v′, l′)⇔
{

v < v′,
v = v′, l < l′.

(93)

This implies that the maximum value of z(v, l) is given by

zmax(m) ≡ vmax(m)−min(m+, m−) +
[
vmax(m)

2

]
+ 1

(94)

+
vmax(m)∑

i=0

([
m3 − i

2

]
+

[
i

2

])
. (95)

It is not very difficult to convince oneself that we can also
establish a one-to-one correspondence between the allowed
values of v and l on the one hand and those of z(v, l) on
the other hand by setting

vz(m3)

≡ max

{
j∈N0 | z−j−

j−1∑
i=0

([
m3−i

2

]
+

[
i

2

])
>0

}
,

lz(m3)

≡ z − vz(m3)−
[
vz(m3)

2

]
− 1

−
vz(m3)−1∑

i=0

([
m3 − i

2

]
+

[
i

2

])
. (96)

The deeper reason for introducing the function z(v, l) be-
comes quite clear, as soon as one realizes that it estab-
lishes an ordering for the coefficients f

m
l,v if we take the

convention
f

m
z(v,l) ≡ f

m
v,l. (97)

By using this ordering the system (88) can be rewritten
as
zmax(m)∑

j=1

Θ (lj + min(m+, m−))·fm
j ·〈z(v′, l′), j〉m

L̂,R
= δv′

0 δl′
0 ,

(98)
where we have introduced the step-function

Θ(h) =

{
0, if h < 0,

1, otherwise,
(99)

and as a short-hand notation10

〈k, j〉m
L̂,R

≡
〈
∂̂ m+(lk,vk,−2lk− vk,lk), Xm+(lj ,vj ,−2lj−vj ,lj)

〉
L̂,R

.

(100)

10 To understand the equivalence of (88) and (98) it is helpful
to keep in mind that vz(v′,l′) = v′ and lz(v′,l′) = l′.
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Generalizing relation (86) to11

〈k, j〉m
L̂,R

= 0, if k < j, (101)

shows us that it is sufficient to choose z(v′, l′) as an upper
bound of the sum over j, i.e.

z(v′,l′)∑
j=1

Θ (lj + min(m+, m−)) · fm
j · 〈z(v′, l′), j〉m

L̂,R
= δv′

0 δl′
0

(102)
or

k∑
j=1

Θ (lj + min(m+, m−)) · fm
j · 〈k, j〉m

L̂,R
= δvk

0 δlk
0 ,

(103)

where 1 ≤ k ≤ zmax(m). In this way we have arrived at
a system of triangular form which we can reduce to the
recursion relation

f
m
k = −

∑
1≤j<k

Θ (lj + min(m+, m−))

× f
m
j ·
〈k, j〉m

L̂,R

〈k, k〉m
L̂,R

, for 1 < k ≤ zmax(m), (104)

f
m
1 =

1
〈1, 1〉m

L̂,R

= 〈∂̂ m, Xm〉L̂,R

=
(−q)m−− m+

[[m−]]q2 ![[m3/0]]q2 ![[m3]]q2 ![[m+]]q2 !
. (105)

Notice that the last expression for f
m
1 in (105) can be

derived rather easily by multiple application of the repre-
sentations presented in [6]. Now, it should be obvious that
the coefficients f

m
k can be expressed as

f
m
k =

k−1∑
i=1

∑
1=j0<j1<...<ji=k

(−1)i

×
∏i

p=1 Θ
(
ljp

+ min(m+, m−)
) · 〈jp, jp−1〉mL̂,R∏i

r=0 〈jr, jr〉mL̂,R

.

(106)

Substituting this into (81) together with (80) finally yields

exp(xR | ∂̂L̂)

=
∞∑

m=0

zmax(m)∑
k=1

(C)m
k

· (−q)m−− m+Xm+(lk,vk,−2lk−vk,lk) ⊗ ∂̂ m

[[m−]]q2 ![[m3/0]]q2 ![[m3]]q2 ![[m+]]q2 !
, (107)

where
11 For a proof of this assumption see Appendix B.

(C)m
k =

k−1∑
i=1

∑
1=j0<j1<...<ji=k

(−1)i

×
i∏

p=1

Θ
(
ljp + min(m+, m−)

) · 〈jp, jp−1〉mL̂,R

〈jr, jr〉mL̂,R

.

(108)

Taking into account the conjugation properties [38]∑
a

fa ⊗ ea =
∑

a

ea ⊗ fa (109)

and

X0 = X0, X3/0 = X3/0, X± = −q∓1X∓,

∂̂0 = ∂̂0, ∂̂3/0 = ∂̂3/0, ∂̂± = −q∓1∂̂∓, (110)

immediately gives us

exp(∂̂R | xL̂) = exp(xR | ∂̂L̂)

=
∞∑

m=0

zmax(m3)∑
k=1

(C̄)m
k

· (−q)m+− m− ∂̂ m ⊗Xm+(lk,vk,−2lk−vk,lk)

[[m−]]q2 ![[m3/0]]q2 ![[m3]]q2 ![[m+]]q2 !
,

(111)

where

(C̄)m
k =

k−1∑
i=1

∑
1=j0<j1<...<ji=k

(−1)i

×
i∏

p=1

Θ
(
ljp+ min(m+,m−)

) 〈jp−1,jp〉mL̂,R

〈jr,jr〉mL̂,R

(112)

with

〈k, j〉mL̂,R

≡
〈
X m+(lj ,vj ,−2lj−vj ,lj), ∂̂ m+(lk,vk,−2lk− vk,lk)

〉
L̂,R

.

(113)

In this sense, we have found expressions for q-exponentials
in terms of the dual pairing between coordinates and
derivatives. It remains to evaluate the expressions in (100)
and (113). But this is a rather tedious task which has to
be done elsewhere. Thus, we do not want to discuss that
issue any further here.

For completeness we wish to present the rules making
a connection between the different types of q-exponentials.
With the same reasonings already applied to the Eu-
clidean cases we can now write

exp(xR | ∂̂L̂)
±
q

→
→

∓
1/q←→ ẽxp(xR̂ | ∂L),

exp(∂̂R | xL̂)
±
q

→
→

∓
1/q←→ ẽxp(∂R̂ | xL), (114)
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where
±
q

→
→

∓
1/q←→ symbolizes the substitutions

q ↔ q−1, X± ↔ X∓,

∂̂± ↔ ∂∓, ∂̂3/0 ↔ ∂3/0, ∂̂0 ↔ ∂0. (115)

6 Remarks

Let us end with a few comments on the explicit expres-
sions we have derived for q-exponentials. In the Euclidean
cases the formulae for dual pairing and q-exponential are
in complete analogy to those of their classical counter-
parts. In particular, they do not depend on terms propor-
tional to powers of the deformation parameter λ = q−q−1.
In the case of q-deformed Minkowski space the situation is
a little bit different, as it is impossible to find two sets of
normally ordered monomials which constitute two bases
being dual to each other. In other words, for every choice
of normally ordered monomials there are terms like〈

∂̂−∂̂+, (X3)2
〉

L̂,R
= λ(1+qλ−1

+ ), λ+ = q+q−1, (116)

vanishing in the undeformed limit as q → 1. It is for this
reason that in expression (107) non-classical factors (C)m

k
appear which depend on powers of λ in such a way that

(C)m
k

q→1−→
{

1, if k = 1,

0, otherwise.
(117)

Acknowledgements. First of all I want to express my grati-
tude to Julius Wess for his efforts, suggestions and discussions.
Also I would like to thank Fabian Bachmaier, Dzo Mikulovic,
Alexander Schmidt and Michael Wohlgenannt for useful discus-
sions and their steady support. Finally, I would like to thank
the referees for their helpful comments.

A Quantum spaces

In this appendix we list for the quantum spaces under
consideration the explicit form of their defining commuta-
tion relations, their conjugation properties and the non-
vanishing elements of the quantum metric.

The coordinates of 2-dimensional q-deformed Eu-
clidean space fulfill the relation

X1X2 = qX2X1, (118)

whereas the quantum metric is given by a matrix εij with
non-vanishing elements

ε12 = q−1/2, ε21 = −q1/2. (119)

Furthermore, the relation (118) is compatible with the
conjugation assignment:

Xi = −εijX
j (120)

where εij denotes the inverse of εij .

In the case of q-deformed Euclidean space in three di-
mensions the commutation relations read

X3X+ = q2X+X3,

X−X3 = q2X3X−,

X−X+ = X+X− + λX3X3. (121)

The non-vanishing elements of the quantum metric are

g+− = −q, g33 = 1, g−+ = −q−1. (122)

Now, the conjugation of the coordinates is given by

XA = gABXB (123)

with gAB being the inverse of gAB .
For the 4-dimensional Euclidean space, we have the

relations

X1X2 = qX2X1, (124)
X1X3 = qX3X1,

X3X4 = qX4X3,

X2X4 = qX4X2,

X2X3 = X3X2,

X4X1 = X1X4 + λX2X3. (125)

The metric has the non-vanishing components

g14 = q−1, g23 = g32 = 1, g41 = q. (126)

The inverse gij of this metric can again be used to formu-
late the conjugation properties for the coordinates, i.e.

Xi = gijX
j . (127)

For q-deformed Minkowski space one has the relations

XµX0 = X0Xµ, µ ∈ {0, +,−, 3},
X−X3 − q2X3X− = −qλX0X−,

X3X+ − q2X+X3 = −qλX0X+,

X−X+ −X+X− = λ(X3X3 −X0X3), (128)

and the metric

g00 = −1, g33 = 1, g+− = −q, g−+ = −q−1. (129)

Finally, the conjugation on q-deformed Minkowski space
is determined by

X0 = X0, X3 = X3, X± = −q∓1X∓. (130)

B Proofs

(1) The Proof of (86) and (101).
Recalling that ∂̂3/0 obeys the commutation relations

∂̂3/0∂̂0 = ∂̂0∂̂3/0, ∂̂3/0∂̂− = q−2∂̂−∂̂3/0 (131)
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and

∂̂3/0X+ = X+∂̂3/0, ∂̂3/0X3/0 = X3/0∂̂3/0, (132)

we can rewrite the dual pairing as follows:〈
∂̂ m, Xm+(l,v,−2l−v,l)

〉
L̂,R

= q2lm3

[
(∂̂+)m−(∂̂0)m3/0(∂̂−)m+ �̄(X+)m++l(X3)m3/0+v

·
(
(∂̂3/0)m3 �̄ (X3)m3−2l−v(X−)m−+l

) ]∣∣∣
X=0

. (133)

Direct inspection of the representations of ∂̂3/0 (presented
in [6]) shows that

(∂̂3/0)n �̄ (X3)k3(X−)k− = 0, if n > k3, (134)

which, in turn, tells us that the last expression in (133)
has to vanish, if 2l + v > 0.

Now we come to the case v > 0. First of all, let us
note that the roles of coordinates and derivatives can be
completely reversed. In this sense we proceed as follows:〈

∂̂ m, Xm+(l,v,−2l−v,l)
〉

L̂,R

= (∂̂ m �̄ Xm+(l,v,−2l−v,l))
∣∣∣
X=0

= (∂̂ m 	 Xm+(l,v,−2l−v,l))
∣∣∣
∂̂=0

= (Xm+(l,v,−2l−v,l) �̄ ∂̂ m)
∣∣∣
∂̂=0

, (135)

where we used for the last identity that

ε(f) = ε(f) = ε(f̄). (136)

Applying the formulae

(X3)n = (X3/0 + X0)n

=
n∑

i=0

(
n

i

)
(X3/0)i(X0)n−i, (137)

(∂̂0)m = (∂̂3 − ∂̂3/0)m

=
m∑

j=0

(
m

j

)
(∂̂3)m−j(−∂̂3/0)j (138)

along with[
(X+)n+(X3/0)n3/0(X0)n0(X−)n− �̄

(∂̂+)m−(∂̂3/0)m3/0(∂̂3)m3(∂̂−)m+

]∣∣∣
∂̂=0

=
[
(∂̂+)n+(∂̂3/0)n3/0(∂̂0)n0(∂̂−)n− �̄

(X+)m−(X3/0)m3/0(X3)m3(X−)m+

]∣∣∣
X=0

(139)

to the last expression in (135) gives us the identity

〈
∂̂ m, Xm+(l,v,−2l−v,l)

〉
L̂,R

=
m3−2l−v∑

i=0

m3/0∑
j=0

(−1)j

(
m3 − 2l − v

i

)(
m3/0

j

)
×

[
(∂̂+)m−+l(∂̂3/0)m3/0+v+i(∂̂0)m3−2l−v−i(∂̂−)m++l �̄

(X+)m+(X3/0)m3+j(X3)m3/0−j(X−)m−
]∣∣∣

X=0
. (140)

Since in the case v > 0 the exponent of ∂̂3/0 is strictly
greater than the exponent of X3 it follows from (134) that〈

∂̂ m, Xm+(l,v,−2l−v,l)
〉

L̂,R
= 0, if v > 0. (141)

Additionally, we get from the above results

〈k, j〉m
L̂,R

=
〈
∂̂m+(lk,vk,−2lk−vk,lk), Xm+(lj ,vj ,−2lj−vj ,lj)

〉
L̂,R

=
〈
∂̂m′

, Xm′+(lj−lk,vj−vk,−2(lj−lk)−(vj−vk),lj−lk)
〉

L̂,R

= 0, if vj > vk or 2lj + vj > 2lk + vk, (142)

where m′ = m+(lk, vk,−2lk − vk, lk). However, the con-
dition in (142) holds for k < j which immediately gives
us

〈k, j〉m
L̂,R

= 0, if k < j. (143)

(2) The Proof of (87).
By specifying the multi-index k to

k = m + (l′, v′,−2l′ − v′, l′) (144)

with

−min(m+, m−) ≤ l′,
−m3/0 ≤ v′ ≤ −1,

2l′ + v′ ≤ m3, (145)

the system (84) reduces to∑
−m3/0≤v≤v′,− min(m+,m−)≤l

2l+v≤2l
′+v

′

f
m
l,v

×
〈
∂̂ m′

, Xm′+(l−l′,v−v′,−2(l−l′)−(v−v′),l−l′)
〉

L̂,R

= δv′
0 δl′

0 , (146)

where m′ = m+(l
′
, v′,−2l

′ − v
′
, l

′
). Notice that we have

a one-to-one correspondence between the equations of the
above subsystem and the pairs (l′, v′). Arranging the equa-
tions of this system in an order determined by

(l
′
1, v

′
1) < (l

′
2, v

′
2)⇔

{
2l

′
1 + v

′
1 < 2l

′
2 + v

′
2,

2l
′
1 + v

′
1 = 2l

′
2 + v

′
2, v

′
1 < v

′
2,

(147)
will then show us that it is of triangular form and solves
for

f
m
l,v = 0, if 2l + v < 0 or v < 0. (148)
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